Modeling oscillatory components with the homogeneous spaces ̇ BMO − α and Ẇ − α , p ∗

نویسندگان

  • John B. Garnett
  • Peter W. Jones
  • Triet M. Le
  • Luminita A. Vese
چکیده

This paper is devoted to the decomposition of an image f into u + v, with u a piecewise-smooth or “cartoon” component, and v an oscillatory component (texture or noise), in a variational approach. The cartoon component u is modeled by a function of bounded variation, while v, usually represented by a square integrable function, is now being modeled by a more refined and weaker texture norm, as a distribution. Generalizing the idea of Y. Meyer [32], where v ∈ F = div(BMO) = ̇ BMO, we model here the texture component by the action of the Riesz potentials on v that belongs to BMO or to Lp. In an earlier work [26], the authors proposed energy minimization models to approximate (BV,F ) decompositions explicitely expressing the texture as divergence of vector fields in BMO. In this paper, we consider an equivalent more isotropic norm of the space F in terms of the Riesz potentials, and study models where the Riesz potentials of oscillatory components belong to BMO or to Lp, 1 ≤ p < ∞ (thus we consider oscillatory components in ̇ BMO or in Ẇα,p, with α < 0). Theoretical, experimental results and comparisons to validate the proposed methods are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Decompositions Using Bounded Variation and Generalized Homogeneous Besov Spaces

This paper is devoted to the decomposition of an image f into u+ v, with u a piecewise-smooth or “cartoon” component, and v an oscillatory component (texture or noise), in a variational approach. Y. Meyer [Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, vol. 22, Amer. Math. Soc., Providence, RI, 2001] proposed refinements of the t...

متن کامل

Carleson Measure Problems for Parabolic Bergman Spaces and Homogeneous Sobolev Spaces

Let bα(R 1+n + ) be the space of solutions to the parabolic equation ∂tu+ (−△)u = 0 (α ∈ (0, 1]) having finite L(R 1+n + ) norm. We characterize nonnegative Radon measures μ on R + having the property ‖u‖Lq(R1+n + ,μ) . ‖u‖ Ẇ1,p(R + ) , 1 ≤ p ≤ q < ∞, whenever u(t, x) ∈ bα(R 1+n + ) ∩ Ẇ 1.p(R + ). Meanwhile, denoting by v(t, x) the solution of the above equation with Cauchy data v0(x), we chara...

متن کامل

Carleson Measures and Balayage for Bergman Spaces of Strongly Pseudoconvex Domains

Given a bounded strongly pseudoconvex domain D in C with smooth boundary, we characterize (p, q, α)-Bergman Carleson measures for 0 < p < ∞, 0 < q < ∞, and α > −1. As an application, we show that the Bergman space version of the balayage of a Bergman Carleson measure on D belongs to BMO in the Kobayashi metric.

متن کامل

Notes on Commutators of Fractional Integral Operatros on Generalized Morrey Spaces

We show that b ∈ BMO( n) if and only if the commutator [b, Iα] of the multiplication operator by b and the fractional integral operator Iα is bounded from generalized Morrey spaces Lp,φ( n) to Lq,φ q/p ( n), where φ is non-decreasing, and 1 < p < ∞, 0 < α < n and 1/q = 1/p− α/n.

متن کامل

ar X iv : 0 90 6 . 51 40 v 1 [ m at h . A P ] 2 8 Ju n 20 09 WELL - POSEDNESS FOR FRACTIONAL NAVIER - STOKES EQUATIONS IN CRITICAL SPACES

In this paper, we prove the well-posedness for the fractional NavierStokes equations in critical spaces G −(2β−1) n (R ) and BMO−(2β−1)(Rn). Both of them are close to the largest critical space Ḃ −(2β−1) ∞,∞ (R ). In G −(2β−1) n (R ), we establish the well-posedness based on a priori estimates for the fractional Navier-Stokes equations in Besov spaces. To obtain the well-posedness in BMO−(2β−1)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007